The dry bulb reading is 85°F and the wet bulb is 60F. Using the chart determine the following values. Using the chart determine the following values: Relative humidity; Dew Point; Absolute humidity; Specific volume; [Specific] enthalpy. Source CED Engineering course PDF: 'Air Conditioning Psychrometrics (A.Bhatia)'
The dry bulb reading is 70°F and the wet bulb is 54°F. Using the chart determine the following values. Using the chart determine the following values: Relative humidity; Dew Point; Absolute humidity; Specific volume; [Specific] enthalpy. Source CED Engineering course PDF: 'Air Conditioning Psychrometrics (A.Bhatia)'
The dry bulb reading is 78°F and the wet bulb is 58°F. Using the chart determine the following values: Relative humidity; Dew Point; Absolute humidity; Specific volume; [Specific] enthalpy. Source CED Engineering course PDF: 'Air Conditioning Psychrometrics (A.Bhatia)'
Example 02: Values from dry bulb temperature 'tdb' and wet bulb temperature 'twb' (sling psychrometer) Gallery Tutorial TRAIL: Air Conditioning Psychrometrics (vs CED Engineering course): Example results (only) in Mathematica and SysML using the Webel Psy package and MPsy class Section Slide kind plot table
A sling psychrometer gives a dry-bulb temperature of 78°F and a wet-bulb temperature of 65°F. Determine other moist air properties from this information. Source CED Engineering course PDF: 'Air Conditioning Psychrometrics (A.Bhatia)'